
ALIEN LETTER FORMS
Jason Lewis

Concordia University
1455 de Maisonneuve Blvd. West CB206-14

Montreal QC (CA) H3G 1M8
jason.lewis@concordia.ca

David Bouchard
Independent Artist
2715 rue Dézéry

Montreal QC (CA) H1W 2S6
david@deadpixel.ca

ABSTRACT
In this paper we describe Alien Letter Forms, a software
environment for letters to live in and evolve into larger texts.
Alien Letter Forms builds on technical and conceptual
approaches borrowed from research around artificial life
systems to create a digital ecology in which text agents live,
reproduce, evolve, mutate and die in response to their virtual
environment. Individual letters are treated as autonomous
agents, where contact between individuals produce offspring
composed of new letter combinations up to and including whole
words. Evolution is driven further by how well new
combinations of letters fit into a set of pre-existing reference
texts. The Alien Letter Forms environment is designed to
produce a continuously evolving collection of letters that has
local stabilities that produce readable text.

Keywords
Digital text, dynamic typography, evolutionary text, emergent
meaning, visual language, recombinant text.

1. INTRODUCTION
The current work is the latest installment in a series of
experiments focused on exploring the expressive possibilities of
computationally active digital texts. By computationally active,
we mean texts which make use of computation to operate on the
interactive, dynamic and linguistic dimensions of a text. The
goal of these experiments is to discover new ways–both
creative and technical–of working with one of our oldest
communication technologies.

2. MOTIVATION
This project aims to explore a potential biological metaphor for
language. Through evolution, simple life forms gave way to
more complex ones; similarly, our characters slowly evolve into
more complex strings towards formation of words and
sentences. An important question we are hoping to answer with
this experiment is whether the biological metaphor is relevant
and to what extend it can be applied to language. We also hope
to provide a means of exploring the semantic space of words as
well as the visual space of typography.

We are not interested in, nor make any claims of, developing a
scientific tool that simulates the natural evolution of human
language. Rather we approach text from an evolutionary
perspective as a source of inspiration and as a means of

exploring the semantic space of a particular language as well as
the visual space of typography.

3. RELATED WORK
The present work draws technical and creative inspiration from
concepts of artificial life and emergent behaviour, agent-based
behaviour systems and computational text.

Sim’s Galapagos [15] is perhaps one of the most interesting
attempts so far at applying genetic algorithms to interactive
computer art. Projects like the Virtual Fish Tank [9] have been
exploring evolution and emergent behaviour between virtual
agents in a creative and visually compelling way.

Lewis and Weyers’ work on ActiveText [4] specifies a system
for coordinating complex dynamic and interactive behaviours
between textual elements. The Visual Language Workshop at
the MIT Media Lab has been the source of a number of works
that use agent-based behaviour systems to support the
visualization of rich behaviour-based texts. Ishizaki’s
dissertation [4] on "typographical performance" anticipates the
use of coordinated behaviors to create a rich visual interplay of
text in an email system. Wong’s thesis [17] on "temporal
typography" uses Soo’s object-based, behavior-driven
architecture [10] to combine dynamics and semantics.

There are a number of creative works which combine
computation and text manipulation to create variations of the
Surrealist’s Exquisite Corpse [11]. Recombinant works such as
Lewis’ Breeder [5] and Seaman’s World Generator [13]
recombine texts from a corpus according to pre-marked
grammatical attributes. Generative works that compose new
texts according to specifications of a rule-base system are
exemplified by include Bulhak’s Dada Engine [1]. Evolutionary
works, such as Schmitzs’ Genotyp [12], make explicit use of
genetic algorithms to breed new typefaces.

4. ARCHITECTURE
The architecture of Alien Letter Forms is inspired by agent-
based simulations. In such simulations, agents are often
modeled after real-world organisms. They are autonomous and
independent entities which usually have a limited awareness of
their environment.

This translates in our system by defining an agent as the most
basic unit of written language--a character. Additionally, our
agents carry properties of their own such as a velocity and a
typeface, which affect their behaviour on screen and their visual
appearance. Their position and their proximity to other agents
determine what they know of their environment and therefore
how they can interact with each other and the space around
them. (Figure 1).

First published at COSIGN-2004,
14 – 16 September 2004, University of Split (Croatia),

Agents take advantage of the NextText library (described in
section 8) to model different behaviour that can act on properties
like velocity and direction to generate movement patterns (linear
motion, erratic motion, etc.). Behaviours can also modify the
physical appearance of the agents themselves. These behaviours
are programmed as independent units and can be inherited from
an agent to the next.

The simulation itself is performed on a time-step basis. At the
tick of an artificial clock, each agent is updated in a parallel
fashion. The method by which each agent is updated depends
on its properties and behaviours but also on its interaction with
other agents, which consists primarily of the reproductive
mechanism described in section 6.

Figure 1. Alien Letter Forms’ agent architecture

5. ENVIRONMENT
Agents exist as though they were floating in liquid or in space.
They move freely around the environment, but tend to be
naturally attracted towards other healthy agents. This
movement makes the randomness required for genetic evolution
visible to the observer
The environment is seeded with pre-written texts. Each seed text
generates a zone of influence which is associated with a region
of the screen (Figure 2). Theses zones are dynamic, meaning
that seed texts compete for space amongst themselves. Their
influence area grows larger as more agents spend time within
their boundaries. A future iteration will allow users to submit
seed texts to the system in real-time over a network connection.
The seed texts could be texts exhibiting, for instance, a contrast
in content, style or even language. The content of the seed texts
influences the reproductive process and thus shapes the outcome
of the text generation.

Figure 2. Sketch of the environment filled with random
agents in their early stages.

6. EVOLUTIONARY MECHANISMS
In order for evolution to occur, we must set up mechanisms that
aim to introduce improvements in the population by each
successive generation. This is translated in the system by a
reproductive function, which has a small chance of being
triggered whenever two agents are within physical proximity of
one another. To be coherent with the evolutionary metaphor,
our reproductive function implements some common operators
of genetic algorithms [8].

6.1 Fitness
Usually, fitness is a function that attempts to rate agents based
on how “good” they are at performing a given task. Note that
this function should be computationally effective because it will
be frequently called. It should also be stochastic in order to
allow the system to take unexpected directions.
In Alien Letter Forms, the task is for agents to become readable
texts. Some strings will be better suited to this than others; in the
English language, for instance, there is an identifiable difference
in fitness between a string such as “house” and “zkcoe”. In
order to represent and measure fitness, agents are rated
according to the relative probability of occurrence of their
character string within the seed texts. The result of the function
is a real value from 0 to 1 which indicates a string’s fitness.
Additionally, fitness is directly reflected by the agent’s
properties such as speed.
Fitness is computed using a data structure inspired by Decision
Learning Trees [7] which conveniently allows for efficient
queries at runtime as well as dynamic updates of the reference
texts. Every possible combination of up to four characters has
its own path in the tree. The four character limit is imposed by
memory restriction since the tree grows exponentially at every
branch level. When building the tree, a counter is incremented
every time a node is reached. Additionally, the maximum
counter is stored at each level of the tree, indicating the number
of occurrences of the most frequent letter combination out of all
possible strings of a certain length (where the length is the depth
in the tree). We use this maximum value as a reference to which
all other values are compared in order to generate relative
frequencies.
Using such a tree, determining the fitness is as straightforward
as following the path given by the characters of the string we are

trying to evaluate and then dividing the score contained in the
terminal node by the maximum score for its depth. Figure 3
illustrates the tree structure for a partial alphabet and how each
level of the tree is associated to a string of corresponding length.
The actual tree used in this project includes uppercase and
lowercase combinations, spaces and a set of common
punctuation characters.
For strings larger than four characters we evaluate their overall
fitness by randomly picking a sample substring every time, thus
ensuring an element of uncertainty. The use of samples in this
case accurately estimates the fitness of the string as a whole
over a time span because the sampling area is always changing.

Figure 3. Partial decision tree of maximum depth (n) 4 for
an alphabet [a…z].

Fitness acts as a determining factor in the application of the
other operators. Whenever a fitness test has to be performed, a
random number from 0 to 1 is generated. If it is smaller than the
agent’s fitness, then the test is a success, otherwise it is a failure.
Accordingly, fit agents will have a higher success rate.

6.2 Crossover
The genetic algorithm also implies a crossover operator which
simulates reproduction between individual agents. (Figure 4)
Traditionally, this operation is performed by taking two agents
and randomly recombining them into two children which in turn
take over their parent’s place in the next generation while
preserving some of their properties.
In this case, however, crossover is approached in a different way
because we want our organisms to grow larger over time. For
this reason we let agents aggregate together during the crossover
operation. Therefore, instead of producing two new offspring,
agent couples merge together into one larger agent during
crossover. The order in which the two agents are aggregated is
determined at random.

Figure 4. A scenario describing two possible outcomes of a
crossover (one with mutation and one without).

6.3 Mutation
Every time two strings aggregate, we introduce a small chance
that they might undergo a mutation in the process. All agents
are equally likely to be affected by a mutation, regardless of
their fitness. A mutation is represented by replacing one of the
characters by a new random character. Mutation occurs in
order to help prevent the system from stagnation.

6.4 Death
The death operator acts like natural selection. Unlike crossover,
which requires two agents to be near each other, death can strike
anyone at anytime. Fit agents are less likely to be affected by
death than other agents.
To be sure, when struck by death, agents do not disappear
entirely but instead break into two smaller strings. This is a
consequence of the crossover operator which already reduces
the number of agents in the population. Therefore, we chose to
avoid destroying large agglomerations of agents at once. Only
single-glyph agents can literally die—be permanently removed
from the system—as they cannot be further reduced.

6.5 Clone
The last operator, clone, is used to allow fit agents to reproduce
themselves by duplication (Figure 5). Like death, clone can
happen at any time and is random, although fit agents are more
likely to be selected. This operator stimulates the production of
good agents in order to improve the overall quality of the
population. Also, like during crossover, there is always a slight
chance that a mutation might occur in the process.

Figure 5. A scenario for a clone operation where no
mutation occurs

7. INTERACTION
The Alien Letter Form environment, once it has begun, is
largely autonomous and acts without outside intervention. Users
can influence the system directly only through the process of
agent creation. New agents are introduced to the system from
text that users input. In the current system, this is accomplished
by typing into a window, from which Alien Letter From pulls

characters to turn into agents. The next system will allow users
to do this in a more natural fashion by using a microphone and
speech recognition engine.
Sentences submitted by users are broken down to letters and
born again as fresh agents in the system. In the process, there is
an opportunity to parse the input text (before it is taken apart)
and extract semantic properties from it, assuming that the user
types in or says actual sentences. The occurrence of certain
words, for instance, will influence the agent’s initial properties
such as type of movement behaviour, font or color. Agents can
also be given additional properties at birth based on the meaning
of the input. An example of this is predator agents.
Predators are integral to most ecosystems yet they have been
overlooked in this discussion so far. The threat they pose to
other species serves the dual purpose of regulating population
growth and stimulating evolutionary change. In order to
transpose this phenomenon to language, predator agents are
generated whenever a slang word is parsed from the input text.
Slang disturbs established linguistic structures. Similarly, our
predator agents are given a property that causes them to trigger
the death (See 6.4) of other agents upon collision. Note that
predators are not affected by death the way regular agents are.
Instead, predators have a lifespan dependent on whether or not
they can find prey over a given period of time. This mirrors
creation of a natural life cycle that will not be dominated by a
large population of predators.

8. NEXTTEXT
Alien Letter Forms relies on NextText [9], a Java library which
allows manipulation of dynamic and interactive texts. The
NextText architecture encourages users to regard text in both its
linguistic and visual dimensions simultaneously. Instead of
having to shift modes or worse yet, applications, in order to
move from one dimension to another and back again, NextText
provides an environment in which creators can write as well as
paint with words.
NextText employs an object-oriented approach that parses input
text into a loosely language-based hierarchy of glyphs, words
and phrases. This hierarchy supports the easy applications of
behaviors at different levels of the text, allowing the user to
specify behavior for an entire passage of text in the same
manner as for individual letters. Behaviors can operate on the
visual, dynamic, interactive or semantic characteristics of the
text. Text components are provided with simple agent-like
functionality to allow them to interact with one another as well
as with the user.
NextText is the successor to ActiveText, a C++ library with a
similar architecture.

9.CONCLUSION AND FUTURE WORK
We have described a software framework created to experiment
with genetically evolved texts. We find that the resulting
environment generates interesting sub-texts and provides a rich
means for re-writing texts. However, the current state of the
work represents just the first few steps into this area. Further
research and development remains.
One area that will be explored in a future iteration of the project
regards the physical appearance of agents. Further work is
planned in order to allow evolution of font faces during
reproduction. The implementation has been delayed as we
research how best to represent glyph outlines such that common

characteristics between glyphs can be recognized, extracted and
compared. We also need to do additional work on determining
how fitness applies to the how fitness applies to the evolution of
font faces and how it should be measured. Suggestions include
nearness to a historical font class (Modern, Roman, Gothic, etc.)
or legibility, although the latter remains rather subjective and
therefore difficult to quantify computationally.
In the semantic direction, we are interested in breaking the text
generation in two phases, the present one which operates at the
character level and a new one which operates at the word level.
This approach would require defining a hybrid of grammar-
based and genetic models. The presented mechanisms for agent
reproduction would be preserved and used to breed readable
words. These words could then be assembled together
according to a grammar-based system. Once words begin
forming, lexical operations could be performed to drive
mutations through different lexical spaces such as synonyms,
antonyms and heteronyms. The newly formed word agents
would employ grammatical operations to link themselves
together into phrases and sentences. In order to integrate this
new element into the biological metaphor, the grammar itself
could be subject to algorithmic evolution.

10. ACKNOWLEDGEMENTS
We would like to thank Taras Kowaliv for his technical and
conceptual contribution with regards to the implementation of a
multi-agent system and the genetic algorithm. We would also
like to thank Alexander Taler for his work on the NextText
library. The work described herein was conducted at Obx
Laboratories and is further supported by Hexagram, the Centre
inter-universitaire des arts médiatiques, and the Fonds québécois
de la recherche sur la société et la culture.

11. REFERENCES
[1] Bulhak, A., The Dada Engine.

http://dev.null.org/dadaengine/

[2] Ishizaki, S., Multi-agent Model of Dynamic Design:
Visualization as an Emergent Behavior of Active Design
Agent. In Proceedings of CHI '96 Human Factors in
Computing Systems, pp. 347 - 354, Vancouver, BC, April
1996.

[3] Leopoldseder, H. and Schopf, C. (eds), Cyberarts 2000. Ars
Electronica Center, Linz, Austria, 2001

[4] Lewis, J. and Weyers, A., ActiveText: an architecture for
creating dynamic and interactive texts. In the Proceedings
of the 12th Annual ACM Symposium on User Interface
Software and Technology Conference (Asheville, North
Carolina, November 1999), ACM Press, 131-140.

[5] Lewis, J., Dynamic Poetry: Introductory remarks to a new
medium. M. Phil. thesis, Royal College of Art, 1996.

[6] Lewis, J., NextText Java Library,
www.obxlabs.net/research/nexttext/

[7] Mitchell, T., Machine Learning, McGraw-Hill, 1997

[8] Mitchell, M., An Introduction to Genetic Algorithms, MIT
Press, 1999

[9] Nearlife, The Virtual Fishtank,
http://www.virtualfishtank.com/press/index.html

[10] Pechawis, A., Nation (multimedia performance).
http://www.aalab.net/ephemera/resid/1.1Nation/, 2000

[11] Rubin, William S. Dada & Surrealist Art. Harry N.
Abrams, Inc., NY, 1968.

[12] Schmitz, Genotyp.
http://www.genotyp.com

[13] Seaman, B., Recombinant Poetics: Emergent meaning as
examined and explored within a specific generative virtual
environment. Doctoral dissertation, Center for the
Advanced Inquiry into the Interactive Arts, 1999

[14] Sha, XinWei, Hubbub,
http://www.gvu.gatech.edu/people/sha.xinwei/topologicalm
edia/hubbub/index.html

[15] Sims, K., Galapagos, http://www.genarts.com/galapagos/

[16] Soo, D., Implementation of a temporal typography system.
Masters thesis, Massachusetts Institute of Technology,
1997.

[17] Wong, Yin Yin. Temporal Typography: Characterization of
time-varying typographic forms. Masters thesis,
Massachusetts Institute of Technology, 1995.

