
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’99. Asheville, NC
 1999 ACM 1-58113-075-9/99/11... $5.00

CHI Letters vol 1, 1 131

ActiveText:
A Method for Creating Dynamic and Interactive Texts

Jason E. Lewis*
Alex Weyers*

Interval Research Corporation
1801 Page Mill Road, Building C

Palo Alto, CA 94304, USA
Tel: 1-650-842-6264

E-mail: {lewis, weyers}@interval.com

ABSTRACT
This paper describes ActiveText, a method for creating
dynamic and interactive texts. ActiveText uses an object-
based hierarchy to represent texts. This hierarchy makes it
easy to work with the ASCII component and pixel
component of the text at the same time. Static, dynamic and
interactive properties of text can be easily intermixed and
layered. The user can enter and edit text, adjust static and
dynamic layout, apply dynamic and interactive behaviors,
and adjust their parameters with a common set of tools and
a common interface. Support for continuous editing allows
the user to sketch dynamically. A prototype application
called It's Alive! has been implemented to explore the
ActiveText functionality. The documents produced by It's
Alive! can be of use in a wide-range of areas, including chat-
spaces, email, web-sites, fiction and poetry writing, and
low-end film & video titling.

KEYWORDS : interactive text, typography, dynamic
typography, continuous editing, dynamic sketching.

INTRODUCTION
The advent of the Internet has created a vast environment in
which text is constantly on the move. The present landscape
is filled with many different entities, from large corporations
to design houses to individuals, who are interested in
making web pages a more dynamic and interactive "read".
When one takes into consideration the large traffic in email
and chat-spaces, both of which are text-driven applications,
the number of potential users for an easy-to-use tool for
adding dynamic and interactive qualities to text is quite
large.

Most application currently used for creating text treat it as a
fundamentally static medium. Dynamics and interactivity
can be added to it, but only with considerable difficulty.
The tools normally used are complex and expensive.
Substantial training is required to use them well. These
drawbacks could be ignored as long as the greatest
consumers of such tools were based in high-cost industries
like film and video production.

The current work attempts to address the much wider
audience created by on-line communication. We assume that
text is a dynamic medium. From that assumption we
develop a method, ActiveText, that treats text as both
character and image. Text can be given behaviors at various
levels of granularity. Dynamic behaviors can be sketched out
in real-time. The user can move fluidly from composing the
text to adding dynamics and interactivity and back again.
To illustrate the ActiveText functionality we have built It's
Alive! It's Alive! is an application which supports rapid
prototyping of static, dynamic and interactive text-driven
documents. This paper describes the ActiveText architecture
and the It's Alive! application.

MOTIVATION
The creation of a digital document that includes static,
dynamic and interactive text is divided into several discrete
stages. A user must compose the text, lay it out, manipulate
the visual form at both gross and small levels of detail,
apply dynamic behaviors and adjust the parameters of those
behaviors, and specify any desired interactivity. We created
the ActiveText architecture to make this process as fluid as
possible.

Imagine that a user wants to make a short text-based piece
which deals with how gossip can corrode the cohesiveness
of a community. The user's idea is to have a single word,
"gossip", affect a larger passage of text one word at a time.
"Gossip" will move around the screen slowly, vibrating
with excitement to convey the busy-body nature of gossips.
When other words come into contact with "gossip", they
will become "infected" with the same behavior, including
the ability to spread their own behaviors further. Figure 1
shows several frames of what such a piece might look like.

* Now at Arts Alliance AALab, 126 South Park, San
Francisco, CA 94107. Email: lewis@thethoughtshop.com

.

CHI Letters vol 1, 1 132

Figure 1: Screen-shots showing the progression of the "gossip" document. "Gossip" begins in the lower-left hand corner.
It cruises randomly around that portion of the screen, its individual glyphs vibrating, until it makes contact with "all" in
the larger body of text. At that point the cruise behavior—which resides on the word object—transfers to "all" and the
vibrate behavior—which resides on the glyph objects which belong to the word object—transfer to the individual glyphs
in "all". The viral behavior on "gossip" at the word-level gets transferred as well, with the result that "all" now moves on to
infect other words just as "gossip" is doing. By the last frame all of the text in the upper left-hand block has been
affected. The title, "corrosion", remains unaffected, as it possess the immunity behavior.

Working With It's Alive!
If the user has an ActiveText-based application like the It's
Alive! prototype, the process would be as follows. First the
user composes, edits and lays out the words on the screen.
The user then selects the word "gossip" and applies the
cruise behavior to it. A palette of properties particular to
that behavior pops up, allowing the user to adjust the speed
and the degree of directional randomness with which the
word will move about the screen.

Next the user selects all of the individual glyphs of the word
"gossip" and applies the vibrate behavior to them. Another
palette pops up with parameters to modify the frequency and
degree of vibration. (We use the term "glyph" as a general
term for any marking, symbol or character,) Finally, the user
re-selects the entire word. The viral behavior is applied at
this level, instructing "gossip" to transfer all of its behaviors
to whatever other text elements it contacts.

The user saves the file and then switches It's Alive! into
simulate mode. "Gossip" wanders around for a bit and then
hits the large body of text. Its behaviors start spreading from
word to word and glyph to glyph. The text block slowly
breaks apart until all of its words are wandering around the
screen, vibrating.

At this point, the user realizes that that there are some
spelling errors in the larger block of text, and that there is
no title to the piece. The user can choose to copyedit while
the document is in action, or by turning the simulation off.
The user chooses the latter, loading the saved file to return
to the original composition. The user also adds the
titleÑ"corrosion"Ñat the bottom left of the screen and
applies the immunity behavior to it. This will keep the title
from being affected by the viral behavior, and thus it will
remain in place.

Working With Conventional Tools

Creating such a document with conventional tools would be
a significantly more involved process. Current tools enforce
a degree of compartmentalization that reflects the many
stages enumerated above. Creating a document like the
"gossip" piece requires that the user work first with
Microsoft Word [1], then move to Quark Xpress [2], then to
Adobe Photoshop, then finally to AfterEffects [3] and/or
Macromedia Director [4]. Making the process more onerous,
the user can move text data through the tool chain in the
direction described without too much difficulty. However,
moving them in the other direction, from Photoshop to
Xpress, for instance, is hard if not impossible.

Applying behaviors such as those in the "gossip" piece
would be even more time-consuming. If the user wanted to
make an animation, each individual glyph would have to be
hand-animated. The complexity of interaction between text
objects as they come into contact with and infect one
another would be a challenging task for a seasoned
professional.

If the user wanted to circumvent the involved animating
process, she could use Director to script the desired
behaviors. This approach suffers from several deficiencies.
Coordinating the vibrate behavior at the glyph-level with
the cruise behavior at the word-level would require a custom
object model. Even after custom-crafting this object model,
the user would find it limited. It would not support
multiple inheritance or polymorphism, both of which make
managing the behaviors of objects within objects more
tractable. The interpreter would struggle to deliver
satisfactory real-time performance as the complexity of the
object model grew. At run-time Director converts display-
text to pixel-only representations, removing the possibility
of copy-editing while the document is in action.

The difficulty in applying complex behaviors, the
multiplicity of tools and the asymmetry between them
conspire to make rapid prototyping of textural appearance,

CHI Letters vol 1, 1 133

dynamic behavior and user interaction extremely difficult for
all but the most experienced users. Such a process wastes
time, stifles creativity, and discourages experimentation.

Surmounting the ASCII-pixel wall
The ActiveText architecture is designed to give the user a
single, unified creative environment for manipulating text.
The first step is to break down the ASCII-wall (Figure 2).
Tools which treat text primarily as ASCII are on one side of
this wall. Examples are common programs for word
processing, such as Word, and for page-layout, such as
Xpress. The user can edit the text at any time, inserting
words and deleting passages, because the software treats the
text as a collection of alphabetical characters. On the other
side of the wall are tools which allow the user to modify the
appearance, dynamics and interactivity of text. Examples
include Photoshop, AfterEffects and Director, respectively.
These programs handle the text as collections of pixels with
certain color values, and neither know nor care that the text
had a character aspect. The user can alter the visual aspect of
the letterforms, but she cannot do much in the way of
editing. The result is that when a user wants to move text
from the ASCII world to the pixel world, she must give up
all information about the text as language.

Figure 2: The location of the ACII-pixel wall in the flow of work
required to make a dynamic and interactive text.

In the context where every byte of memory is precious,
throwing away information in this manner is necessary to
conserve storage space and maintain real-time
responsiveness. The memory capacities and processor
speeds of modern personal computers mitigate the need to
be so conservative. If we retain such information not only
can we move easily between ASCII and pixels, but we can
also build upon it to offer other capabilities which are based
on the syntactic structure of the text. We can cause all of the
nouns in a sentence to vibrate, or all of the verbs to wriggle.
We can perform dictionary and thesaurus look-ups and make
substitutions on the fly. Or we can have all the articles in a
sentence cluster into one corner of the screen as if shirking
their yeoman's duties.
Stream vs. Object-Based Hierarchy

A common means of internally representing text is by
parsing the text into a one-dimensional array. The resulting
"stream" of characters is manipulated via an offset into the
stream that determines where characters are added or deleted,
what font starts and stops where, what size starts and stops
where, etc. The only text object the application must
maintain is the stream. This method works well for a static
paradigm in which the two most important pieces of
information about the text are the ASCII-value of each of the
characters in the stream and the font (including face, size,
and style.)

The stream method is not as well-suited for a dynamic
paradigm in which different chunks of text are subject to
behaviors and in which the visual rendering of a character
changes from moment to moment. Among other difficulties,
it would require heavy modification so as to support storage
for and real-time updating of the pixel representations for
individual characters. It would also be a challenge to
manage the interaction of various behaviors, as the stream
would require constant reparsing to find the relevant chunks.

ActiveText addresses these issues by employing an object
hierarchy (Figure 3.) The text is parsed into meaningful
chunks such as glyph, word, passage, and text objects. Each
object can be manipulated both autonomously and by
inheritance from the larger structures above it in the
hierarchy. Each glyph stores both its ASCII and pixel
values. Behaviors mediate for control at the appropriate
object level. Everything in the architecture, including
objects and behaviors, is agnostic about how the glyphs are
actually rendered. This encapsulation enables the
development of fonts which are dynamic and interactive in
and of themselves. We call these fonts "SoftType" fonts.

Figure 3: The hierarchy of text objects.

Continuous Editing
Current tools for doing dynamic and interactive text
documents require the user to author in one mode and then
switch to a separate mode to view the results. ActiveText
supports continuous editing: all of the tools in It's Alive!,
for instance, can be used for both static and dynamic
composition.

RELATED WORK
Related work can be divided into two main groups,

CHI Letters vol 1, 1 134

experimental digital typography and object-manipulation
architecture.

Experimental Digital Typography
MIT's Media Lab has conducted a large amount of research
experimenting with alternative means of representing and
manipulating on-screen text. Ishizaki's [5] dissertation on
"typographical performance" anticipates the use of
coordinated behaviors to create a rich interplay of text in an
email system. Wong's [6] thesis on "temporal typography"
uses Soo's [7] object-based, behavior-driven architecture to
deftly marry dynamics and semantics. Chao [8] developed a
system for specifying behaviors for the visual presentation of
program code. Small's early work on text-based information
landscapes [9] and later work such as Stream [10]
experimented with different methods for representing text
documents. These efforts all tackled different aspects of
adding complex dynamics to text, often with compelling
visual results.

On the level of innovative glyph representations one must
turn to Maeda [11], who has a long history of exploring the
dynamic aspects of letterforms. Rosenberger [12] developed
a font that responds to human vocal prosody by modifying
the visual aspect of individual glyphs, while Cho [13]
created a series of malleable and animated fonts. Haeberli has
created a tool for dynamically altering the shape and look of
individual three-dimensional letterforms (personal
communication.). All of this work, however, is sealed into
its own specialized applications. Using any of it in an full-
featured dynamic word processing environment would
require extensive rewriting. The SoftType component of the
present work seeks to make such radical glyph
representations readily available and usable in a complete
writing environment.

Lewis' [14] work on WordNozzle makes a analogy between
stream representations of text and streams of paint applied,
grafitti-like, to a canvas. This work highlighted some of the
limitations of working within the stream paradigm,
particularly when attempting to apply behaviors to a large
body of text.

MotionPhone by Snibbe [15] removes the distinction
between authoring and performance modes. The result is a
fluid, accessible tool which is particularly well-suited to
experimentation but proves quite difficult to use as a
composition tool. This difficulty stems from the fact that the
user is forced to constantly "catch up" to his own document.
The continuous editing approach taken in the present work
addresses this issue by giving the user the option to edit in
both static and dynamic modes.

Several commercial products can be used for creating
dynamic texts. At the high-end are film effects system such
as Discrete Logic's Flame and related systems [16], and
Quantel's Harry[17]. These systems run on specialized
hardware and require extensive customization to use fluidly.
The documents they produce are not interactive. Adobe
AfterEffects, which dominates the middle-range, produces

non-interactive video loops. At the low end are products
like Microsoft's Liquid Motion and Macromedia's Flash,
with very limited interactivity and weak scripting
environments.

Object Manipulation Architecture
ActiveText's hierarchy of text objects is similar to any
number of scene graph hierarchies used in graphical
applications, starting with Lakin [18]. We specialized the
ActiveText architecture to text in order to concentrate on
fully exploring the possibilities such an approach offers to
typographic and textual manipulation.

Similarly, the text objects are specialized "actors", in the
sense meant by Reynolds [19]. They possess and process
behaviors in a manner similar to Perlin and Goldberg [20],
though the present implementation does not ahieve Perlin
and GoldbergÕs level of sophistication with regards to
mediating conflicting behaviors. The text-objects have
behaviors which can be layered, they pass messages back-
and-forth, and respond to other text-objects and general
environmental conditions. The present work attempts to
specialize such techniques exclusively to text in an attempt
to tap into heretofore unrealized methods for handling text-
based documents.

THE ACTIVETEXT ARCHITECTURE
ActiveText is an architecture for creating dynamic and
interactive texts. It consists of a set of C++ libraries written
on top of the Microsoft Foundation Classes [21]. The
architecture parses text into an object-hierarchy based on
textual granularity. Character information is stored as both
ASCII- and pixel-values. Behaviors for transforming the text
objects utilize a message subscription model to coordinate
between and mediate among themselves. Object
encapsulation enables continuous editing.

The architecture meets several challenges. In order to be
usable in a wide range of areas, it has to support dynamic
and interactive behaviors of all forms. The text objects on
which these behaviors are operating must interact with a
particular behavior at the level or levels which is/are
appropriate. For instance, if the user places the move to
mouse behavior on individual glyphs, the interaction
between glyph objects and behavior must reflect this by
moving the glyphs independently towards the mouse. If the
user places move to mouse on a word objects, the
appropriate result is to have the word move as a unit
towards the mouse.

Text objects must have a means of notifying a behavior if it
is not a candidate for the behavior's particular function. An
example of such a case is the synonym shift behavior, which
uses the WordNet [22] lexicon to cycle a word through its
different synonyms. A synonym is a word-level
phenomenon; it makes no sense to apply the concept to a
glyph. Yet it does make sense to apply it to a passage if the
user wants to have all of the words in a passage cycle
through their synonyms. The architecture must support such
nuance.

CHI Letters vol 1, 1 135

In order to support complex, layered behaviors, the
architecture must provide a means to negotiate control of a
particular object. It must also support the activation and
deactivation of behaviors by other behaviors. Similarly,
support for SoftType fonts requires that the architecture de-
couple how behaviors operate on text elements from how the
actual glyphs themselves are drawn.

Finally, the continuous editing requirement means that all
of this coordination must be possible while the document is
in motion and the user is interacting with it. If the user
deletes an object, wherever it is in the hierarchy, the
architecture must remove it cleanly and notify behaviors
which are acting upon it of this removal. If objects are
added, such as adding a word object to a passage object, the
behaviors must be able to incorporate the new object into
their actions on the fly. Further complicating matters is the
fact that not only can the user add elements and behaviors
and adjust their properties, but other behaviors can do this
as well.

Hierarchy of Text Objects
The basic element in the ActiveText data structure is the
book object. The book functions as both an encapsulation
of the text objects and an engine for driving behaviors.
Every new ActiveText document creates a single book, and
it is the book that is stored and retrieved when a file is
saved or loaded.

The Text object contained within the book functions as the
root node for the entire hierarchy of text objects. (We will
use a capital "T" to differentiate between this particular root
node and "text objects" as a general term for glyph, word
and passage objects.) The Text object is composed of
passage objects, which are in turn composed of word
objects, which are in turn composed of glyph objects
(Figure 3). As a user enters text into an ActiveText
document, each new character is stored as a glyph object.
Every collection of glyphs separated by spaces or other
punctuation is considered a word and linked to its own
word object. Finally, all words are joined into a passage
object. New passages are created by placing the cursor
outside of the existing text.

Text, passage, word and glyph objects are all derived from
the same base object class. This class maintains pointers to
the other members in the object hierarchy. Each object
inherits a set of basic properties that includes font, color,
and position. The positions of all objects are relative to
that objectÕs parent. Consequently, a glyph stores its
location as a position within the coordinate system of its
parent word. The position of a word is an offset from its
parent passage. This arrangement facilitates the sensible
positioning of objects at different levels within the hierarchy,
either by the user or by behaviors that need to naively
operate on objects regardless of their type.

The encapsulation of the objects in the hierarchy allows
ActiveText to support continuous editing, i.e., the

composition, layout, and creation of complex behaviors
while the document is in action.

Behaviors and Messages
ActiveText behaviors are objects that alter the properties of
text objects over time or in response to user interactions.
Such properties include font, color and position. Each
behavior has a list of subjects (i.e., text objects) upon which
the behavior acts (Figure 4.) Both user interaction and the
activity of other behaviors can modify the subject list.
Behaviors and objects are coordinated using a message
subscription model [23].

Figure 4: The interaction between the hierarchy of text
objects and the list of behaviors. Text objects are
subjects of a particular behavior. The properties of
the behavior determine how it modifies the properties
of the text objects which subscribe to it.

When a behavior is instantiated by either the user or by
another behavior, the instance is added to the book's list of
behavior objects. Initially, behaviors are inactive. At the
point of activation they subscribe to the appropriate
messages. The book will then notify that behavior instance
when an event of interest occurs. Similarly when a behavior
is deactivated, its instance is unsubscribed from all of the
messages with which it had registered.

Primitive behaviors such as move to mouse and fade
respond to messages by altering the state of properties which
belong to all members of its subject list. For instance, the
move to mouse behavior subscribes to the system
:movemouse message. When an instance of move to mouse
receives a :mousemove message it responds by altering the
position values of its subjects to decrease the distance
between the subjects and the mouse.

Behaviors are capable of creating new properties on members
of their subject list. These properties can be accessed by
behaviors other than the one which created them. Behaviors
which operate on the same properties do so successively
(Figure 5.)

CHI Letters vol 1, 1 136

Figure 5: The result of two behaviors, gravity and
acceleration, acting on the same text object.

By creating, deleting or reordering objects, behaviors can
manipulate the gross structure of the text. They can also
create or destroy other instances of behaviors.

Complex Behaviors
The creation of complex behavioral interactions is
accomplished through the use of a particular derived class of
behaviors called trigger behaviors. These trigger behaviors
contain lists of behaviors to activate and deactivate in
response to the trigger. A trigger can take the form of a
wide range of possible stimuli including time-offsets,
movement of the mouse, or some chosen state of a text
object's properties. Trigger behaviors thus become the
building blocks for creating complex interactions without
the requirement that the user learn a scripting language.
Simple time-based animation is accomplished by creating a
set of time-based triggers for each moment of relevant
change.

The SoftType Fonts
ActiveText supports standard TrueType fonts as well as
dynamic and interactive variations on TrueType outlines.
These variations are called SoftType fonts. A glyph in a
SoftType font will change shape in response to user action,
behavior intervention or timer messages (Figure 6.)

In order to safely mix standard TrueType fonts and
SoftType fonts, the rendering of glyph outlines is performed
by an ElementRenderer object (Figure 7.) The
ElementRenderer determines how and when the object will
draw itself on-screen. An object without an ElementRenderer
will not draw itself. The first time a text is entered and
parsed into objects, each glyph is given an ElementRenderer
set to the default or standard text output. Words and
passages do not have an ElementRenderer unless the user or
another behavior explicitly assigns one.

Like behaviors, ElementRenderers are capable of subscribing
to messages. They can be applied at any level in the
hierarchy. Unlike behaviors, an object has at most one

ElementRenderer. This restriction is to prevent the needless
activity that would occur if multiple ElementRenderers
attempted to draw the same object.

(a)

(b)

Figure 6: Screenshots of a "Q" distorting in response
to mouse movement over it. 6a shows successive
frames as the mouse moves around the lower-right
portion of the letter. 6b shows successive frames as
the mouse moves around the left and upper-left of the
letter.

Figure 7: The ElementRenderer renders glyphs as
either unmodified TrueType outlines (top) or as
SoftType (bottom).

THE IT'S ALIVE! PROTOTYPE
It's Alive! is a prototype application which uses the
ActiveText libraries to create an interactive- and dynamic-
text processor. It's Alive! is written in C++ for the
WindowsNT/95/98 platform.

Description
It's Alive! is a single-window environment (Figure 8.)
Within this window is a canvas. Text is entered by locating
a cursor on the canvas with the mouse and typing. Basic
editing functionality such as adding and deleting text is
accomplished in this direct manner.

CHI Letters vol 1, 1 137

Figure 8: The It's Alive application with transparent palette upper-left, pie menu lower-left and "spider" display
connecting the components of the text hierarchy.

Two types of pop-up windows, or palettes, are used. The
properties palette displays the properties of a selected object.
The behavior palette displays a specific behavior and
provides access to the parameters of that behavior.
Following Bier, et al, [24] the palettes have variable
transparency. This allows the user to make adjustments
while maintaining view of the full canvas.

In order to keep track of what text objects are related to each
other and how, It's Alive! uses a node-and-spoke display.
An example can be seen in the middle of Figure 8. Small
circles are placed under each glyph in a word. Spokes
connect each glyph to a medium circle placed under the
center of the word. This circle is in turn connected to a large
circle which is at the center of the passage to which it
belongs. All of the passage are connected by spokes to the
largest circle, which is placed at the center of the entire text.
This display is called a "spider" display within the
document. With it the user can see which glyphs are related
to which words, which words to which passages, etc. This
is particularly helpful for dynamic sketching, or while
editing complex documents.

Environment, property and behavior functionality is
accessed through a pie menu system derived from Hopkins
[25]. The pie menu is activated by the right mouse button
(see lower-left of Figure 8.). It has four axes: typographic,
selection, behaviors, and file. Each of these axes opens out
into a series of submenus:

Behaviors The user uses this menu to apply or remove

behaviors to and from selected text objects (Figure 9.). This
is also where the user can choose to turn the dynamics on or
off by selecting "simulation".

Figure 9: The behavior menu.

File Operations such as creating a new document, loading a
file, QuickTime output and other exporting functionality are
accessed here.

CHI Letters vol 1, 1 138

Typographic Controls the appearance of glyphs in the text
(Figure 10.) The user can change the font, size, color and
style from this menu. All of these submenus provide instant
feedback, e.g., as the user moves the mouse through the list
of fonts the font of the selected text changes appropriately.

Figure 10: The typographic menu selected out to 4
levels.

Selection Allows the user to alter the granularity of a
selection (Figure 11.) For instance, if the user has selected
an entire passage, choosing words will select each of the
individual words in that passage. Conversely, if the user has
selected a word, choosing passage will select the entire
passage of which that word is part.

Figure 11: The selection menu showing the various
ways in which the user can get a handle on the text.

User Experience Study
We conducted a user study on a highly restricted set of the
ActiveText functionality embodied in It's Alive! The
subjects' exposure to the full capabilities of the prototype
was limited in order to focus on how they reacted to
behaviors, and, in particular, if they thought it possible that
they would make use of such behaviors in their daily text-
based communication. The It's Alive! interface in all its
complexity was not tested. For most task, users button-
clicked through different examples of simple documents
made with It's Alive! In one task they were themselves able
to add, remove and layer behaviors.

The subject pool was composed of eight dyads of
experienced personal computer users. All were from a nearby
undergraduate and graduate university. Subject ages ranged
from 20 to 24 years old, with an equal number of males and
females.

Preliminary results from the test suggest that users found the
behaviors interesting and novel, but it is unclear how much
they might use them in every day communication. Users
showed the most interested when layered behaviors
produced unexpected results, such as adding a wave motion
to an explode behavior, or by combining any of the
SoftType fonts with anything else. The subjects clearly
thought it necessary that the application of behaviors require
little time or overhead, particularly for communication
media such as chat and email. We look forward to testing
the full It's Alive! interface to see if it is lightweight enough
to address their concerns.

The subjects' responses were not the only valuable outcome
of the study. No crashes happened over a week of rigorous
testing, suggesting that the ActiveText libraries underlying
It's Alive! possess a fair degree of robustness.

Continuing Work
 The It's Alive! prototype is only in its first phase. The
current phase of implementation includes numerous
extensions to the current functionality.

A simple timeline allows the users to specify when objects
appear on screen, when behaviors turn on or off, and get an
overview of longer documents. An environment-level
behavior called ActivePaper has been defined. ActivePapers
are regions of the screen which interact in a particular way
with whatever text passes through them. The incorporation
of a Postscript module for exporting individual glyphs
makes It's Alive! available for use as a tool for
experimenting with typography.

As it is currently written, ActiveText anticipates run-time
registration of behaviors and SoftType fonts. Except for text
objects, all the critical objects in the system possesses a
unique identifier. These identifiers are declared statically in
the current version of It's Alive!. In the next version these
identifiers will be generated at run-time as part of
registration process. Run-time registration will allow third-
parties to create plug-in behaviors and SoftType fonts.

Negotiation between conflicting behaviors is presently quite
rudimentary, following a simple precedence model. We
anticipate a more sophisticated solution growing out of
further research into architectures such as Perlin's IMPROV
system.

DISCUSSION
The ActiveText architecture improves the process of creating
a dynamic and interactive text. It releases the user from
having to worry about crossing over the ASCII-pixel wall
and not being able to return. It permits the user to both
compose statically and sketch dynamically. The architecture
supports increasingly complex applications of behaviors,
and provides a robust means for incorporating radical glyph
representations such as those represented by the SoftType
fonts.

Arriving at the present implementation involved significant

CHI Letters vol 1, 1 139

experimentation and learning. From that process, we have
selected a few points that may be of particular interest to
anyone interested in utilizing the existing libraries or
implementing a similar architecture.

The object model complicates basic editing functions. In
moving away from a token stream text representation we
gain greater flexibility but also create new problems. Some
of the most basic editing tasks became rather complex. For
instance, a stream model is not concerned with position on
the screen but with position within a one-dimensional array.
Actually placing the text in the proper position, ensuring
that it wraps in the correct place and so forth is a task given
to the interface. In the ActiveText architecture, position is
stored as a two-dimensional value. Every text object
calculates and stores its position as an offset into the
coordinate system of its parent object. The position property
of every object requires constant maintenance while the user
composes, edits and otherwise modifies the text.

Designing a tractable hierarchy is not the same as
designing a meaningful one. The composition of the object
hierarchy above the level of the word and below the level of
the text, i.e., at the level we presently call the "passage", is
questionable. We considered several other chunks at this
level, including sentences and phrases. "Passage" proved to
be general enough to encompass both terms. Yet it denotes
a vagueness which is unsatisfying, and which does not
reflect the way in which people talk about language. We
anticipate user studies will assist us on resolving this
matter.

Complex interactions among complex behaviors frustrates
predictability. Once behaviors reach a sufficient degree of
complexity, it is difficult to predict the outcome of their
interaction. Seen one way, this provides a constant stream of
pleasant surprises on the order of "that's interesting; how did
that happen?" and is a fruitful way of exploring unexpected
compositions. Seen another way, this lack of predictability
leads to frustration as the text behaves in undesirable ways.
One solution to the predictability issue is to rigorously
divide behaviors into a set of primitive behaviors and a set
of compound behaviors, with the former built upon the
latter. The primitive behaviors would be simple enough that
the user could reliable predict what certain combinations of
them will be like. Another solution may lie at the interface,
in presenting behaviors to the user in functional groupings
and in providing a quick preview mechanism.

Managing complex interactions among complex behaviors
is an unending tuning process. It took us some time to fine-
tune the behavioral structure such that it is manageable from
a programming standpoint. The subscription model helps
manage the complexity, yet it does not remove the necessity
for ongoing modifications to the way behaviors interact.

CONCLUSION AND FUTURE WORK
We have argued that current tools for creating dynamic and
interactive texts limit the ability of the user to conceive of,
experiment with and produce such texts. The proposed

ActiveText method supports a more expressive and fluid
method for creating such texts. The object-based hierarchy,
combined with dual ASCII-pixel representations, a
mechanism for sensibly applying and coordinating
behaviors, and rigid data encapsulation allow the user to
easily modify the text in interesting way in both static and
dynamic modes. We have described a prototype, called It's
Alive!, which is built on top of ActiveText libraries.
Finally, we have reported cautiously positive results from a
user-experience study in which subjects were exposed to a
limited portion of the It's Alive! application.

We anticipate that the next major phase of research will
address issues such as:

Integration into on-line applications. We would like to
investigate ways of making the ActiveText functionality
accessible to browsers, email applications and chat. This
will most likely be done by constructing the appropriate
plug-ins, but may also be accomplished within a Java or
modified Flash framework.

Performance version. We also wish to develop a version
suitable to live performance of spoken word, perhaps
incorporating functionality similar to Rosenberger's
Prosodic Font.

Further iterations on the user interface. We would like to
further refine the user interface, and test it to see if it is
indeed an improvement over the standard toolbar interface
found in conventional text-tools.

Integrating computational linguistics. The trajectory we are
most excited about following is to firmly tie the text objects
into techniques for performing linguistic computation. The
text's existence as a fully parsed structure provides easy
access to words and passages/phrases/sentences. The
addition of a dynamic parts-of-speech tagger would enable
users to specify behavior based upon whether a word is a
noun or a verb, etc. Combined with lexical information
similar to that provided by WordNet, a wealth of potentially
interesting behaviors operating simultaneously on semantics
and aesthetics should become possible.

ACKNOWLEDGEMENTS
Scott Snibbe and Douglas Soo assisted in developing
SoftType, and conversations with Sha Xin Wei led to the
ActivePaper concept. Jenny Dana and Tom Ngo helped with
the intricacies of mediating behaviors. Warren Sack
provided sound advice on computational linguistics, and
Gavin Miller lent optimization assistance. Debby Hindus
provided invaluable commentary on several drafts of this
paper.

REFERENCES
1. Microsoft Corporation. Product specifications. On-line

at http://www.microsoft.com/office/95/word.htm.

2. Quark Corporation. Product specifications. On-line at

http://www.quark.com/

CHI Letters vol 1, 1 140

3. Adobe Corporation. Product specifications. On-line at

http://www.adobe.com/.

4. Macromedia Corporation. Product Specifications. On-

line at http://www.macromedia.com.

5. Ishizaki, Suguru. Multiagent Model of Dynamic

Design: Visualization as an Emergent Behavior of
Active Design Agent. In Proceedings of CHI '96
Human Factors in Computing Systems, pp. 347 - 354,
Vancouver, BC, April 1996.

6. Wong, Yin Yin. Temporal Typography:

Characterization of time-varying typographic forms.
Masters thesis, Massachusetts Institute of Technology,
1995.

7. Soo, Douglas. Implementation of a temporal

typography system. Masters thesis, Massachusetts
Institute of Technology, 1997.

8. Chao, Chloe. Kinetext: A concrete programming

paradigm for kinetic typography. Masters thesis,
Massachusetts Institute of Technology, 1998.

9. Small, David. Navigating large bodies of text. IBM

Systems Journal, Vol. 35, No. 3&4, 1996.

10. Small, David and Tom White. An Interactive Poetic

Garden. In Proceedings of CHI '98 Human Factors in
Computing Systems, pp. 303-304, LA, CA, April 18-
23, 1998.

11. Maeda, John. Flying Letters. Reactive Book Series,

Number Two. Digitalogue, Tokyo, 1996.

12. Rosenberger, Tara. Prosodic Font: The space between

the spoken and the written. Masters thesis,
Massachusetts Institute for Technology, 1998.

13. Cho, Peter. Pliant Type: Development and temporal

manipulation of expressive, malleable typography.
Masters thesis, Massachusetts Institute for Technology,
1997.

14. Lewis, Jason. WordNozzle: Painting with Words.
Sketches section of the Special Interest Group Graphics
(SIGGRAPH) Annual Conference, Los Angeles, August
1997.

15. Snibbe, Scott. MotionPhone. Interactive communities

section of the Special Interest Group Graphics
(SIGGRAPH) Annual Conference, Los Angeles, August
1995.

16. Discrete Logic. On-line at http://www.discrete.com.

17. Quantel Corporation. On-line at http://www.quantel.

com.

18. Lakin, F.H. A structure from manipulation for text-
graphic Objects. Computer Graphics (SIGGRAPH Ô82
Proceedings), 14 (3), pp. 100-107, July 1982.

19. Reynolds, C.W. Computer animation with scripts and

actors, Computer Graphics (SIGGRAPH Ô82
Proceedings), 16 (3), pp. 289-296, July 1982.

20. Perlin, Ken and Athomas Goldberg. IMPROV: A

System for scripting interactive actors in virutal worlds,
Proceedings of SIGGRAPH Ô96, pp. 205-216, August
1996.

21. Microsoft Visual Studio 6.0. Microsoft Corporation,

Redmond, WA, 1998.

22. Fellbaum, Christiane (ed.) WordNet: An electronic

lexical database. MIT Press, Cambridge, MA, 1998.

23. Gamma, Erich, Richard Helm, Ralph Johnson and John

Vlissides. Design Patterns: Elements of reusable
objected oriented software. Addison-Wesley, Reading,
MA, 1995.

24. Bier, Eric A., Maureen C. Stone, Ken Pier, William

Buxton, and Tony DeRose. Toolglass and Magic
Lenses: the see-through interface.

25. Hopkins, Don. The design and implementation of pie

Menus. Dr. Dobb's Journal, December, 1991, 16-26.

